

## **Table of Ordinary Differential Equation Solution Methods**

| Туре                           | Ordinary Differential Equations of the<br>Form:                                                                                                       | Method of Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First-Order<br>Separable (2.2) | $\frac{dy}{dx} = g(x)h(y)$                                                                                                                            | <ul> <li>(1) Rewrite as 1/h(y) dy = g(x)dx.</li> <li>(2) Integrate both sides.<br/>Note: Check for singular solutions at h(y) = 0 which may have been lost.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| First-Order Linear (2.3)       | $a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$                                                                                                                | <ul> <li>(1) Rewrite as dy/dx + a<sub>0</sub>(x)/a<sub>1</sub>(x) y = g(x)/a<sub>1</sub>(x) (standard form)</li> <li>(2) Determine an interval <i>I</i> on which both a<sub>0</sub>(x)/a<sub>1</sub>(x) and g(x)/a<sub>1</sub>(x) are continuous.</li> <li>(3) Determine the integrating factor μ(x) = e ∫ a<sub>0</sub>(x)/a<sub>1</sub>(x) dx.</li> <li>(4) Multiply both sides of the standard-form equation by μ(x), which simplifies to dx/dx [μ(x)y] = μ(x)g(x)/a<sub>1</sub>(x).</li> <li>(5) Integrate both sides of the simplified equation. Note: if g(x) = 0, then the equation is said to be homogenous and always has the trivial solution y = 0.</li> </ul> |
| First-Order<br>Exact (2.4a)    | $M(x, y)dx + N(x, y)dy = 0$ (Alternatively $M(x, y) + N(x, y)\frac{dy}{dx} = 0$ ) And $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ | <ol> <li>(1) Verify that \$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}\$.</li> <li>(2) Integrate \$M(x, y)\$ with respect to \$x\$ (treating \$y\$ as a constant).</li> <li>(3) Integrate \$N(x, y)\$ with respect to \$y\$ (treating \$x\$ as a constant).</li> <li>(4) The general solution is the sum of the results of (1) and (2), plus an arbitrary constant \$c\$.</li> </ol>                                                                                                                                                                                                                                                                    |

|                               |                                                                                                                | $\frac{\partial M}{\partial M} = \frac{\partial N}{\partial N}$                                                  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| First-Order Near-Exact (2.4b) | M(x, y)dx + N(x, y)dy = 0                                                                                      | (1) First, verify whether $\frac{\partial y  \partial x}{N} = \varphi(x)$ (i.e. a function of <i>x</i> alone) or |
|                               | Where $\frac{\partial M}{\partial t} \neq \frac{\partial N}{\partial t}$                                       | $\frac{\partial N}{\partial M} = \frac{\partial M}{\partial M}$                                                  |
|                               | $\partial y  \partial x$                                                                                       | $\frac{\partial x}{\partial y} = \varphi(y)$ (i.e. a function of y alone). It may be that both cases work; if    |
|                               | $\frac{\partial M}{\partial v} = \frac{\partial V}{\partial r}$                                                | M<br>so choose the simpler function                                                                              |
|                               | But $\frac{\partial y}{\partial x} = \varphi(x)$                                                               | (2) Depending on the result of (1), calculate the integrating factor, either                                     |
|                               | $\frac{\partial N}{\partial r} - \frac{\partial M}{\partial v}$                                                | $\mu(x) = e^{\int \varphi(x) dx} \text{ or } \mu(y) = e^{\int \varphi(y) dy}$                                    |
|                               | Or $\frac{\partial x}{\partial y} = \varphi(y)$                                                                | (3) Multiply $M(x, y)$ and $N(x, y)$ by the integrating factor (either $\mu(x)$ or $\mu(y)$ ,                    |
|                               |                                                                                                                | depending on the result of (1)).                                                                                 |
|                               |                                                                                                                | (4) Proceed as with a First-Order Exact.                                                                         |
|                               | M(x, y)dx + N(x, y)dy = 0<br>Where $M(x, y)$ and $N(x, y)$ are                                                 | (1) Verify that $M(x, y)$ and $N(x, y)$ are homogenous functions of the same degree,                             |
| noi                           |                                                                                                                | i.e. $M(tx, ty)dx + N(tx, ty)dy = t^{\alpha}[M(x, y)dx + N(x, y)dy]$ for some $\alpha \in \mathbf{R}$            |
| gen                           |                                                                                                                | (2) Make substitutions:                                                                                          |
| mo                            |                                                                                                                | a. If $M(x, y)$ is simpler than $N(x, y)$ , make the substitutions $y = ux$ and                                  |
| Ho<br>.5a)                    | homogenous functions of the same                                                                               | dy = xdu + udx                                                                                                   |
| der ]<br>(2.                  | degree, i.e. $M(tx, ty)dx + N(tx, ty)dy = t^{\alpha} [M(x, y)dx + N(x, y)dy]$ for some $\alpha \in \mathbf{R}$ | b. If $N(x, y)$ is simpler than $M(x, y)$ , make the substitutions $x = vy$ and $dr = vdy + vdr$                 |
| -O-1                          |                                                                                                                | (3) Verify that the equation is now First-Order Separable (rearranging if necessary)                             |
| irs                           |                                                                                                                | and solve.                                                                                                       |
| Щ                             |                                                                                                                | (4) Undo the substitutions made in (2).                                                                          |
| (c                            |                                                                                                                |                                                                                                                  |
| rst-Order)<br>oulli (2.5h     |                                                                                                                | (1) Make the substitutions $u = y^{(1-n)}$ and $du = (1-n)y^{-n}dy$                                              |
|                               | $\frac{dy}{dx} + P(x)y = f(x)y^n$                                                                              | (2) Verify that the equation is now First-Order Linear (rearranging if necessary) and                            |
|                               | Where $n \in \mathbf{R}$                                                                                       | solve.                                                                                                           |
| (Fi:<br>Bern                  |                                                                                                                | (3) Undo the substitutions made in (1).                                                                          |
| ł                             |                                                                                                                |                                                                                                                  |

| Reduction (2.5c)   |                                                                                                                                                                     | (1) Make the substitution $u = Ax + By + C$ and $\frac{du}{dx} = \frac{d}{dx}[Ax + By + C]$ (noting that                                                                                            |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | $\frac{dy}{dx} = F(Ax + By + C) \text{ where } B \neq 0 \text{ (may not}$                                                                                           | y will become $\frac{dy}{dx}$ which will need to be solved for in order to make the                                                                                                                 |
|                    | have exactly this form, sometimes                                                                                                                                   | substitution).                                                                                                                                                                                      |
|                    | difficult to spot)                                                                                                                                                  | (2) Verify that the equation is now First-Order Separable (rearranging if necessary)                                                                                                                |
|                    |                                                                                                                                                                     | and solve.<br>(3) Undo the substitution made in (1)                                                                                                                                                 |
|                    |                                                                                                                                                                     | (1) Make the substitution $v = e^{mx}$ (and $v' = me^{mx}$ , etc.)                                                                                                                                  |
|                    |                                                                                                                                                                     | (2) Factor out $e^{mx}$ from all terms Since $e^{mx} > 0$ for all $m \in \mathbf{R}$ it can be dropped                                                                                              |
|                    |                                                                                                                                                                     | giving the polynomial "auxiliary equation" $a_n m^n + a_{(n-1)}m^{n-1} + \dots + a_0 = 0$                                                                                                           |
|                    |                                                                                                                                                                     | (3) Solve the auxiliary equation through whichever means are available. Classify                                                                                                                    |
|                    | $a_n y^{(n)} + a_{(n-1)} y^{(n-1)} + \dots + a_0 y = 0$<br>Where $a_n$ is a constant (possibly<br>complex) and $y^{(n)}$ is the n <sup>th</sup> derivative of<br>y. | the roots as follows:                                                                                                                                                                               |
|                    |                                                                                                                                                                     | Type I – Unique Real Roots                                                                                                                                                                          |
| 6 (4.3             |                                                                                                                                                                     | Type II – Repeated Real Roots (i.e. those roots which bring more than one factor in the auxiliary equation to zero)                                                                                 |
| nou                |                                                                                                                                                                     | Type III – Complex Roots (which always appear in conjugate pairs $\alpha + \beta i$ and                                                                                                             |
| oge                |                                                                                                                                                                     | $\alpha - \beta i$ )                                                                                                                                                                                |
| Hom                |                                                                                                                                                                     | <ul><li>(4) Transform the roots of the auxiliary equation into solutions of the DE as follows:</li><li>a. Type I – Unique Real Roots: For each unique real root <i>m</i> of the auxiliary</li></ul> |
| lear               |                                                                                                                                                                     | equation, there is a solution $c \cdot e^{mx}$ to the corresponding DE.                                                                                                                             |
| er Line            |                                                                                                                                                                     | b. Type II – Repeated Real Roots: For each real root <i>m</i> of the auxiliary equation repeated <i>k</i> times, each of the following is a solution to the corresponding                           |
| Drd                |                                                                                                                                                                     | DE: $c_1 \cdot x^0 \cdot e^{mx}$ , $c_2 \cdot x^1 \cdot e^{mx}$ ,, $c_k \cdot x^{(k-1)} \cdot e^{mx}$ (This can be proved using                                                                     |
| n <sup>th</sup> -( |                                                                                                                                                                     | reduction of order.)                                                                                                                                                                                |
| L                  |                                                                                                                                                                     | c. Type III – Complex Roots: For each conjugate pair of complex roots $m_1$ and                                                                                                                     |
|                    |                                                                                                                                                                     | $m_2$ of the auxiliary equation, both $c_1 \cdot e^{\alpha x} \cdot \cos(\beta x)$ and $c_2 \cdot e^{\alpha x} \cdot \sin(\beta x)$ are                                                             |
|                    |                                                                                                                                                                     | solutions to the corresponding DE. (Where $m_1 = \alpha + \beta i$ and $m_2 = \alpha - \beta i$ .)                                                                                                  |
|                    |                                                                                                                                                                     | (5) The general solution $y_c$ to the DE may be found by summing the solutions                                                                                                                      |
|                    |                                                                                                                                                                     | found in each part of (4), noting that the constants $c_i$ in each solution may be                                                                                                                  |
|                    |                                                                                                                                                                     | different.                                                                                                                                                                                          |

|                                                                              |                                                                                                                                                                     | (1) Replace $g(x)$ with 0. Find the general solution $y_c$ of the resulting Linear              |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| n <sup>th</sup> -Order Linear Non-Homogenous<br>(Annihilator Approach) (4.5) |                                                                                                                                                                     | Homogenous DE.                                                                                  |
|                                                                              |                                                                                                                                                                     | (2) Rewrite the DE using <i>D</i> -notation.                                                    |
|                                                                              |                                                                                                                                                                     | (3) Determine an annihilation function (operator) $L(x)$ such that $L(g(x)) = 0$ .              |
|                                                                              |                                                                                                                                                                     | a. The operator $L_1(x) = D^n$ annihilates polynomial terms of the                              |
|                                                                              |                                                                                                                                                                     | form $c_1 \cdot x^k$ , for any $k \mid 0 \le k \le (n-1)$ (i.e. polynomials of degree $n-1$ ).  |
|                                                                              | $a_n y^{(n)} + a_{(n-1)} y^{(n-1)} + \dots + a_0 y = g(x)$                                                                                                          | b. The operator $L_2(x) = (D - \alpha)^n$ annihilates exponential terms of the                  |
|                                                                              | Where $g(x) \neq 0$ , $a_n$ is a constant (possibly                                                                                                                 | form $c_{2} x^{k} e^{\alpha x}$ , for any $k \mid 0 \le k \le (n-1)$                            |
|                                                                              | complex) and $y^{(n)}$ is the n <sup>th</sup> derivative of<br><i>y</i> , and $g(x)$ is a product or sum of<br>polynomial, exponential, sine or cosine<br>functions | c. The operator $L_3(x) = (D^2 - 2\alpha D - (\alpha^2 - \beta^2))^n$ annihilates sine, cosine, |
|                                                                              |                                                                                                                                                                     | and exponential terms of the form $c_{3.}x^{k}e^{\alpha x}\cos(\beta x)$ and                    |
|                                                                              |                                                                                                                                                                     | $c_{3.}x^{k}e^{\alpha x}\sin(\beta x)$ , for any $k \mid 0 \le k \le (n-1)$                     |
|                                                                              | functions.                                                                                                                                                          | (4) Apply the annihilation operator to both sides of the equation. Find the                     |
|                                                                              | g<br>(5)                                                                                                                                                            | general solution $y_p$ of the resulting Linear Homogenous equation.                             |
|                                                                              |                                                                                                                                                                     | (5) Delete any terms in $y_p$ (found in (4)) that also appear in $y_c$ (found in (1)).          |
|                                                                              |                                                                                                                                                                     | Plug this reduced $y_p$ into the original DE and solve for the constants in $y_p$ .             |
|                                                                              |                                                                                                                                                                     | (6) The general solution of the original DE is $y_c + y_p$ (the $y_p$ with the solved-          |
|                                                                              |                                                                                                                                                                     | for constants).                                                                                 |

| <ul> <li>(1) Replace g(x) with 0. Find the general solution y<sub>c</sub> of the resulting Linear Homogenous DE.</li> <li>(2) Compute the general Wronskian W(y<sub>c1</sub>, y<sub>c2</sub>,, y<sub>cn</sub>), where y<sub>cn</sub> is the n<sup>th</sup> term of the general solution y<sub>c</sub> with a coefficient of 1.</li> <li>(3) Put the original DE into standard form (i.e. divide both sides of the equation by a<sub>n</sub>). Let g(x)/a<sub>n</sub> = f(x).</li> <li>(4) For each term y<sub>ci</sub> of the general solution y<sub>c</sub>, do the following: <ul> <li>a. Compute the modified Wronskian W<sub>i</sub>, which is the general Wronskian with the i<sup>th</sup> column (i.e. the column tied to the i<sup>th</sup> term of the general solution y<sub>c</sub>) replaced with the function f(x) in the bottom row and 0 in all the other rows.</li> <li>b. Compute the factor u<sub>i</sub>(x) = e<sup>∫ W<sub>i</sub>/W dx</sup>.</li> </ul> </li> <li>(5) The particular solution is y<sub>p</sub> = ∑<sub>i=1</sub><sup>n</sup> u<sub>i</sub>y<sub>i</sub> (i.e. the sum of the products of each term of y<sub>c</sub> and their respective factors).</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| term of $y_c$ and their respective factors).<br>(6) The general solution of the original DE is $y_c + y_p$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1) Make the substitution $y = x^m$ (and $y' = mx^m$ , $y'' = m(m-1)x^m$ , etc.)                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2) Factor out $x^m$ from all terms. Since $e^{mx} > 0$ for all $m \in \mathbf{R}$ , it can be dropped, giving a polynomial "auxiliary equation". |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3) Solve the auxiliary equation through whichever means are available.                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Classify the roots as follows:                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type I – Unique Real Roots                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type II – Repeated Real Roots (i.e. those roots which bring more than one factor                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the auxiliary equation to zero)                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type III – Complex Roots (which always appear in conjugate pairs $\alpha + \beta i$ and                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\alpha - \beta i$ )                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4) Transform the roots of the auxiliary equation into solutions of the DE as                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | follows:                                                                                                                                          |
| $a_{n} x^{n} y^{(n)} + a_{n-1} y^{(n-1)} + a_$ | a. Type I – Unique Real Roots: For each unique real root <i>m</i> of the                                                                          |
| $u_n x y + u_{(n-1)} x y + \dots + u_0 y - g(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | auxiliary equation, there is a solution $c \cdot x^m$ to the corresponding DE.                                                                    |
| where $g(x) \neq 0$ , $u_n$ is a constant (possibly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b. Type II – Repeated Real Roots: For each real root <i>m</i> of the auxiliary                                                                    |
| complex), $y^{(n)}$ is the n <sup>th</sup> derivative of y,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | equation repeated <i>k</i> times, each of the following is a solution to the                                                                      |
| and $g(x)$ is any function. (If $g(x) = 0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | corresponding DE: $c_1 \cdot \ln  x ^0 \cdot x^m$ , $c_2 \cdot \ln  x ^1 \cdot x^m$ ,,                                                            |
| then the equation is called homogenous.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $c_k \cdot \ln  x ^{(k-1)} \cdot x^m$ (This can be proved using reduction of order.)                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c. Type III – Complex Roots: For each conjugate pair of complex roots                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m_1$ and $m_2$ of the auxiliary equation, both $c_1 \cdot x^{\alpha} \cdot \cos(\beta \cdot \ln  x )$ and                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $c_2 \cdot x^{\alpha} \cdot \sin(\beta \cdot \ln  x )$ are solutions to the corresponding DE. (Where                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m_1 = \alpha + \beta i$ and $m_2 = \alpha - \beta i$ .)                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5) The general solution $v$ to the DE may be found by summing the solutions                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | found in each part of (4) noting that the constants $c_1$ in each solution may be                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | different                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (6) If $g(\mathbf{r}) \neq 0$ (i.e. the equation is non-homogenous) then use Variation of                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameters (using v from (5) and starting at step (2)) to find the particular                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | solution $y_c$ from (5) and starting at step (2)) to find the particular                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solution $y_p$ .                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (7) The general solution of the original DE is $y_c + y_p$ .                                                                                      |