

Table of Ordinary Differential Equation Solution Methods

Type	Ordinary Differential Equations of the Form:	Method of Solution
	$\frac{d y}{d x}=g(x) h(y)$	(1) Rewrite as $\frac{1}{h(y)} d y=g(x) d x$. (2) Integrate both sides. Note: Check for singular solutions at $h(y)=0$ which may have been lost.
	$a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)$	(1) Rewrite as $\frac{d y}{d x}+\frac{a_{0}(x)}{a_{1}(x)} y=\frac{g(x)}{a_{1}(x)}$ (standard form) (2) Determine an interval I on which both $\frac{a_{0}(x)}{a_{1}(x)}$ and $\frac{g(x)}{a_{1}(x)}$ are continuous. (3) Determine the integrating factor $\mu(x)=e^{\int \frac{a_{0}(x)}{a_{1}(x)} d x}$. (4) Multiply both sides of the standard-form equation by $\mu(x)$, which simplifies to $\frac{d}{d x}[\mu(x) y]=\frac{\mu(x) g(x)}{a_{1}(x)}$. (5) Integrate both sides of the simplified equation. Note: if $g(x)=0$, then the equation is said to be homogenous and always has the trivial solution $y=0$.
	$M(x, y) d x+N(x, y) d y=0$ (Alternatively $M(x, y)+N(x, y) \frac{d y}{d x}=0$) And $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$	(1) Verify that $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. (2) Integrate $M(x, y)$ with respect to x (treating y as a constant). (3) Integrate $N(x, y)$ with respect to y (treating x as a constant). (4) The general solution is the sum of the results of (1) and (2), plus an arbitrary constant c.

First-Order Near-Exact (2.4b)	$\begin{gathered} M(x, y) d x+N(x, y) d y=0 \\ \text { Where } \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \\ \text { But } \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\varphi(x) \\ \text { Or } \frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}=\varphi(y) \end{gathered}$	(1) First, verify whether $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\varphi(x)$ (i.e. a function of x alone) or $\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}=\varphi(y)$ so, choose the simpler function. (2) Depending on the result of (1), calculate the integrating factor, either $\mu(x)=e^{\int \varphi(x) d x} \text { or } \mu(y)=e^{\int \varphi(y) d y}$ (3) Multiply $M(x, y)$ and $N(x, y)$ by the integrating factor (either $\mu(x)$ or $\mu(y)$, depending on the result of (1)). (4) Proceed as with a First-Order Exact.
号	$M(x, y) d x+N(x, y) d y=0$ Where $M(x, y)$ and $N(x, y)$ are homogenous functions of the same degree, i.e. $M(t x, t y) d x+N(t x, t y) d y=$ $t^{\alpha}[M(x, y) d x+N(x, y) d y]$ for some $\alpha \in \mathbf{R}$	(1) Verify that $M(x, y)$ and $N(x, y)$ are homogenous functions of the same degree, i.e. $M(t x, t y) d x+N(t x, t y) d y=t^{\alpha}[M(x, y) d x+N(x, y) d y]$ for some $\alpha \in \mathbf{R}$ (2) Make substitutions: a. If $M(x, y)$ is simpler than $N(x, y)$, make the substitutions $y=u x$ and $d y=x d u+u d x$ b. If $N(x, y)$ is simpler than $M(x, y)$, make the substitutions $x=v y$ and $d x=y d v+v d x$ (3) Verify that the equation is now First-Order Separable (rearranging if necessary) and solve. (4) Undo the substitutions made in (2).
	$\frac{d y}{d x}+P(x) y=f(x) y^{n}$ Where $n \in \mathbf{R}$	(1) Make the substitutions $u=y^{(1-n)}$ and $d u=(1-n) y^{-n} d y$ (2) Verify that the equation is now First-Order Linear (rearranging if necessary) and solve. (3) Undo the substitutions made in (1).

	$\frac{d y}{d x}=F(A x+B y+C)$ where $B \neq 0$ (may not have exactly this form, sometimes difficult to spot)	(1) Make the substitution $u=A x+B y+C$ and $\frac{d u}{d x}=\frac{d}{d x}[A x+B y+C]$ (noting that y will become $\frac{d y}{d x}$ which will need to be solved for in order to make the substitution). (2) Verify that the equation is now First-Order Separable (rearranging if necessary) and solve. (3) Undo the substitution made in (1)
令	$a_{n} y^{(n)}+a_{(n-1)} y^{(n-1)}+\ldots+a_{0} y=0$ Where a_{n} is a constant (possibly complex) and $y^{(n)}$ is the $\mathrm{n}^{\text {th }}$ derivative of y.	(1) Make the substitution $y=e^{m x}$ (and $y^{\prime}=m e^{m x}$, etc.) (2) Factor out $e^{m x}$ from all terms. Since $e^{m x}>0$ for all $m \in \mathbf{R}$, it can be dropped, giving the polynomial "auxiliary equation" $a_{n} m^{n}+a_{(n-1)} m^{n-1}+\ldots+a_{0}=0$ (3) Solve the auxiliary equation through whichever means are available. Classify the roots as follows: Type I - Unique Real Roots Type II - Repeated Real Roots (i.e. those roots which bring more than one factor in the auxiliary equation to zero) Type III - Complex Roots (which always appear in conjugate pairs $\alpha+\beta i$ and $\alpha-\beta i)$ (4) Transform the roots of the auxiliary equation into solutions of the DE as follows: a. Type I - Unique Real Roots: For each unique real root m of the auxiliary equation, there is a solution $c \cdot e^{m x}$ to the corresponding DE. b. Type II - Repeated Real Roots: For each real root m of the auxiliary equation repeated k times, each of the following is a solution to the corresponding DE: $c_{1} \cdot x^{0} \cdot e^{m x}, c_{2} \cdot x^{1} \cdot e^{m x}, \ldots, c_{k} \cdot x^{(k-1)} \cdot e^{m x}$ (This can be proved using reduction of order.) c. Type III - Complex Roots: For each conjugate pair of complex roots m_{1} and m_{2} of the auxiliary equation, both $c_{1} \cdot e^{\alpha x} \cdot \cos (\beta x)$ and $c_{2} \cdot e^{\alpha x} \cdot \sin (\beta x)$ are solutions to the corresponding DE. (Where $m_{1}=\alpha+\beta i$ and $m_{2}=\alpha-\beta i$.) (5) The general solution y_{c} to the DE may be found by summing the solutions found in each part of (4), noting that the constants c_{i} in each solution may be different.

	$a_{n} y^{(n)}+a_{(n-1)} y^{(n-1)}+\ldots+a_{0} y=g(x)$ Where $g(x) \neq 0, a_{n}$ is a constant (possibly complex) and $y^{(n)}$ is the $\mathrm{n}^{\text {th }}$ derivative of y, and $g(x)$ is a product or sum of polynomial, exponential, sine or cosine functions.	(1) Replace $g(x)$ with 0 . Find the general solution y_{c} of the resulting Linear Homogenous DE. (2) Rewrite the DE using D-notation. (3) Determine an annihilation function (operator) $L(x)$ such that $L(g(x))=0$. a. The operator $L_{1}(x)=D^{n}$ annihilates polynomial terms of the form $c_{1} \cdot x^{k}$, for any $k \mid 0 \leq k \leq(n-1)$ (i.e. polynomials of degree $\left.n-1\right)$. b. The operator $L_{2}(x)=(D-\alpha)^{n}$ annihilates exponential terms of the form $c_{2} \cdot x^{k} e^{\alpha x}$, for any $k \mid 0 \leq k \leq(n-1)$ c. The operator $L_{3}(x)=\left(D^{2}-2 \alpha D-\left(\alpha^{2}-\beta^{2}\right)\right)^{n}$ annihilates sine, cosine, and exponential terms of the form $c_{3} \cdot x^{k} e^{\alpha x} \cos (\beta x)$ and $c_{3} \cdot x^{k} e^{\alpha x} \sin (\beta x)$, for any $k \mid 0 \leq k \leq(n-1)$ (4) Apply the annihilation operator to both sides of the equation. Find the general solution y_{p} of the resulting Linear Homogenous equation. (5) Delete any terms in y_{p} (found in (4)) that also appear in y_{c} (found in (1)). Plug this reduced y_{p} into the original DE and solve for the constants in y_{p}. (6) The general solution of the original DE is $y_{c}+y_{p}$ (the y_{p} with the solvedfor constants).

(1) Replace $g(x)$ with 0 . Find the general solution y_{c} of the resulting Linear Homogenous DE.
(2) Compute the general Wronskian $W\left(y_{c 1}, y_{c 2}, \ldots, y_{c n}\right)$, where $y_{c n}$ is the $\mathrm{n}^{\text {th }}$ term of the general solution y_{c} with a coefficient of 1 .
(3) Put the original DE into standard form (i.e. divide both sides of the equation by a_{n}). Let $\frac{g(x)}{a_{n}}=f(x)$.
(4) For each term $y_{c i}$ of the general solution y_{c}, do the following:
a. Compute the modified Wronskian W_{i}, which is the general Wronskian with the $\mathrm{i}^{\text {th }}$ column (i.e. the column tied to the $\mathrm{i}^{\text {th }}$ term of the general solution y_{c}) replaced with the function $f(x)$ in the bottom row and 0 in all the other rows.
b. Compute the factor $u_{i}(x)=e^{\int \frac{W_{i}}{W} d x}$.
(5) The particular solution is $y_{p}=\sum_{i=1}^{n} u_{i} y_{i}$ (i.e. the sum of the products of each term of y_{c} and their respective factors).
(6) The general solution of the original DE is $y_{c}+y_{p}$.

令	$a_{n} x^{n} y^{(n)}+a_{(n-1)} x^{n-1} y^{(n-1)}+\ldots+a_{0} y=g(x)$ Where $g(x) \neq 0, a_{n}$ is a constant (possibly complex), $y^{(n)}$ is the $\mathrm{n}^{\text {th }}$ derivative of y, and $g(x)$ is any function. (If $g(x)=0$, then the equation is called homogenous.)	(1) Make the substitution $y=x^{m}$ (and $y^{\prime}=m x^{m}, y^{\prime \prime}=m(m-1) x^{m}$, etc.) (2) Factor out x^{m} from all terms. Since $e^{m x}>0$ for all $m \in \mathbf{R}$, it can be dropped, giving a polynomial "auxiliary equation". (3) Solve the auxiliary equation through whichever means are available. Classify the roots as follows: Type I - Unique Real Roots Type II - Repeated Real Roots (i.e. those roots which bring more than one factor in the auxiliary equation to zero) Type III - Complex Roots (which always appear in conjugate pairs $\alpha+\beta i$ and $\alpha-\beta i)$ (4) Transform the roots of the auxiliary equation into solutions of the DE as follows: a. Type I - Unique Real Roots: For each unique real root m of the auxiliary equation, there is a solution $c \cdot x^{m}$ to the corresponding DE. b. Type II - Repeated Real Roots: For each real root m of the auxiliary equation repeated k times, each of the following is a solution to the corresponding DE: $c_{1} \cdot \ln \|x\|^{0} \cdot x^{m}, c_{2} \cdot \ln \|x\|^{1} \cdot x^{m}, \ldots$, $c_{k} \cdot \ln \|x\|^{(k-1)} \cdot x^{m}$ (This can be proved using reduction of order.) c. Type III - Complex Roots: For each conjugate pair of complex roots m_{1} and m_{2} of the auxiliary equation, both $c_{1} \cdot x^{\alpha} \cdot \cos (\beta \cdot \ln \|x\|)$ and $c_{2} \cdot x^{\alpha} \cdot \sin (\beta \cdot \ln \|x\|)$ are solutions to the corresponding DE. (Where $m_{1}=\alpha+\beta i$ and $\left.m_{2}=\alpha-\beta i.\right)$ (5) The general solution y_{c} to the DE may be found by summing the solutions found in each part of (4), noting that the constants c_{i} in each solution may be different. (6) If $g(x) \neq 0$ (i.e. the equation is non-homogenous), then use Variation of Parameters (using y_{c} from (5) and starting at step (2)) to find the particular solution y_{p}. (7) The general solution of the original DE is $y_{c}+y_{p}$.

